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We consider fully developed steady laminar flow through a pipe that is rotating slowly 
about a line perpendicular to its own axis. The solution is expanded for low Reynolds 
numbers in powers of a single combined similarity parameter and the series extended 
to 34 terms by computer. Analysis shows that convergence is limited by a square-root 
singularity on the negative real axis of the similarity parameter. An Euler trans- 
formation and extraction of the leading, secondary and tertiary singularities at  
infinity render the series accurate for all values of the similarity parameter. The major 
conclusion of this investigation is that the friction ratio in a slowly rotating pipe grows 
asymptotically as the power of the similarity parameter and not as the power as 
previously deduced from boundary -layer analysis. This discrepancy between the 
present computer-extended method and boundary-layer analysis has also occurred 
in the similar problem of flow through a loosely coiled pipe (Van Dyke 1978). 

1. Introduction 
This work is concerned with the problem of flow through a pipe that is rotating 

about a line perpendicular to its own axis. The goal of,the analysis is to provide as 
complete a description as possible of the flow. Even though the problem involves two 
parameters, it turns out that an adequate solution can be obtained in terms of a single 
combined similarity parameter. 

Previous work on this problem has been modelled on the pioneering theoretical 
analysis of Dean (1927, 1928) and the experiments of White (1929) and Adler (1934) 
for the analogous problem of a coiled pipe. Thus Barua (1954) followed Dean in 
perturbing the Poiseuille flow by expanding the cross-flow stream function and axial 
velocity in double power series in two parameters that are combinations of the 
Reynolds numbers R and R,, based on the axial and rotational velocities. He obtained 
an expansion for the friction ratio in terms of the same two parameters. Independently, 
Benton (1956) also made a small-perturbation analysis based on the Poiseuille flow, 
and carried out experiments showing the effect of the Earth’s rotation on laminar 
flow in a pipe. His solution is qualitative in nature. A’somewhat different approach 
to the problem has been adopted by Jones & Walters (1967); they neglect the 
boundary layer at the wall, assume uniform flow in the core, find the axial-velocity 
distribution, and are thereby able to obtain the flow rate. Their results confirm 
Barua’s conclusion that the flow rate is less than that for the corresponding flow in 
a stationary pipe under the same pressure gradient. Furthermore, It6 & Motai (1974) 
considered simultaneously in a single paper the effects of both curving and rotating 
a pipe. Their double expansion reproduces the result obtained separately by Dean 
and Barua. 

The first experiments for a rotat,ing pipe were conducted by Trefethen (1957 a, b) .  
The most important part of his observation was that the onset of turbulence is 
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inhibited by rotation of the pipe. Secondly, he found that for a slowly rotating pipe 
the laminar regime can be correlated by a single similarity parameter K = RR,. More 
recently, I t6 & Nanbo (1970) performed experiments to  find the friction factor, 
velocity distribution in the piane of symmetry, and pressure distribution along the 
circumferential wall of the pipe. 

The first boundary-layer analysis of this problem was made by Mori & Nakayama 
(1968). They assumed that the boundary-layer thickness is constant with respect to  
the angular coordinate inasmuch as the Coriolis force due to  the rotation acts in a 
fixed direction. Their assumption about angular independence of the thickness seems 
unreasonable. It6 & Nanbo (1970) also carried out  a boundary-layer analysis. Their 
equations were solved via the Karman-Polhausen method of integration. But their 
model seems to be invalid in the vicinity of the innermost ring because a t  that  point 
they predict infinite boundary-layer thickness. 

For the problem of flow through a loosely coiled pipe, Dean (1927) was able to  
express the solution to a good approximation in terms of a single expansion parameter 
that  now bears his name. However, for the rotating-pipe problem, neither Barua 
(1954) nor Benton (1956) was able to  expand the solution in terms of a single 
parameter. Consequently, Barua was unable to give the range of validity of the 
solution, as Dean (1938) did in his curved-pipe research. 

The present investigation is a description of how the rotating-pipe problem can 
theoretically be treated with a single similarity parameter K = RR,. The perturbation 
expansion is here carried to higher order by delegating the laborious arithmetic to 
a computer. In many papers, Van Dyke has exploited this method for unveiling the 
structure of various flows in fluid mechanics (see Van Dyke 1975). We note that in 
many problems the structure of the boundary layer is complicated, possibly due to  
colliding layers, internal jets and/or flow separation. One way to  overcome such a 
difficulty is to apply seminumerical methods.7 

The problem under present consideration, the slowly rotating pipe, is one of those 
simple, experimentally realizable and realistic problems where this technique can be 
examined. I n  contrast with boundary-layer techniques, the seminumerical methods 
make no assumption as to the nature of the core when K is infinite. 

2. Statement of problem 
We consider the steady fully developed laminar flow through a pipe of circular 

cross-section that is rotating with a constant angular velocity about a line perpend- 
icular to  its axis (figure 1). This problem was first analysed by Barua (1954). For 
clarification we modify Barua’s dimensionless Navier-Stokes equations so that the 
dependent as well as the independent variables are of order unity for slow rotation. 
This requires referring lengths to the radius a of the pipe, as usual, but referring the 
axial velocity W to Dean’s (1928) W, (the maximum speed in Poiseuille flow through 
the non-rotating pipe under the same pressure gradient) rather than to v /a ,  and 
referring the cross-flow stream function Y to 252 W, a3/v  rather than to v. Then the 
dimensionless problem becomes 

t This method includes our present technique. 
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FIGURE 1. Notation for slowly rotating pipe. 

These equations are to be solved with the boundary conditions 

aly 

ar 
W = Y = - = O  at r = l .  

3. Slow rotation 
3.1. Analytical solution for slow rotation, R,/R -4 1 

Barua (1934) and Benton (1956) attacked this problem by making a double expansion 
in powers of RR, and RF (They used these two parameters, but in different form and 
notation.) If the problem lends itself to a single expansion then one of the parameters 
must be related to the other by considering a double-limit process. By analogy with 
Dean’s treatment of the flow through a curved pipe, one can analyse the double limit? 

R + m ,  Rr+o’) K = RR, fixed. 

Under this limiting process, which we call slow rotation, the last term disappears from 
(2.1); then the equations reduce to 

(3.3) 
ay 
ar 

with W = Y = - = O  at r = l .  

If the pipe is rotating slowly, or the rotational Reynolds number R,  is small, so that 

t The explanation of this particular combination K = RR, is given in the Appendix. 
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K is small, the nonlinear terms on the right-hand side of (2.1) are negligible and the 
first approximation is the familiar Poiseuille flow, with 

W, = 1-rz. (3.4) 

One can systematically improve on this approximation by expanding in powers of 

1 

m (3.5) 

K according to m 

W = W,+KW2+K2W3+ ... = 

Y = Yl+KY2+ K2Y3+ ... = 

Kn-' W,, 

Kn-' Yn. 

Substituting (3.5) into (3.1) and (3.2) and equating like powers of K yields the 
sequence of linear equations 

-4 (n  = l ) ,  

(3.6) 

These equations can be solved by separating variables in coordinates r and 0. Thus 
we find 

W = 1-r2+&K(r-2r3++r5-+r7)cos@+ ..., 
Y = 1 ( 8  768 r-16r3+8r5) sin@+ .... (3.10) 

The difficulty of successively finding the higher-ordcr terms rapidly becomes greater. 
Barua (1954) was able to calculate one more term in each of the series (3.9), (3.10) 
as Dean did for his own loosely curved pipe. Independently of Barua (1954), and with 
a different form of expansion, Benton (1956) has also given results up to the second 
approximation (order of K2) in each of these series. From the series solution we can 
compute two related global quantities of practical interest. The flux rat'io is defined 
as the ratio of the flux F, through a rotating pipe to thc flux Fs through a stationary 
pipe with the same pressure gradient. Its series has the form 

(3.9) 

Alternatively, It6 & Nanbu (1970) define the friction ratio as 

(:)-'=fb,(SfiX) K 2n = l + y ( s f i ~ )  1 K 2  +.... 

(3.1 1 )  

(3.12) 

The numerical coefficients of the flux-ratio series (3.1 1 )  are in good agreement with 
the result obtained by Barua. It is worth mentioning that the numerical coefficients 
of the friction-ratio series (3.12) do not match with Earua's corresponding coefficients 
because he used a different definition of friction ratio. 
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3.2. Experimental observations 
Some remarkable experimental observations have been made regarding the secondary 
motion induced by external forces in flow through a pipe. In the three different cases 
of flow in a rotating pipe, in a curved pipe and in a horizontal heated pipe, the same 
phenomenon of double helical motion has occurred. This helical motion stabilizes the 
flow, and so delays the onset of turbulence until a higher value of the Reynolds 
number than for the corresponding pipe with no external force. 

White (1929) was the first to discover that bending a pipe to a radius ratio a / R  = 
(radius of the pipe, divided by radius of curvature) increases the critical Reynolds 
number (based on mean flow speed) from about 2300 to 7800. Similarly Trefethen 
(1957a,b) has confirmed the inhibition of the onset of turbulence and resulting 
stabilization of flow in a curved pipe, as well as in a rotating or heated horizontal 
pipe. 

In the case of flow through a rotating pipe, It6 (1970) has discovered that, for a 
pipe at  R, = 2000 (Reynolds number based on angular velocity), the critical Reynolds 
number (based on mean-flow speed) is almost three times the corresponding critical 
Reynolds number in a straight pipe. As a result of Ito’s (1970) experiments, it  can 
be anticipated that the laminar regime will persist beyond K = lo7 for R, x 2000. 

Equation (3.11) is the result of solving the problem of flow through a rotating pipe 
while assuming low value of K .  We find in $3.3 that the series (3.11) converges only 
up to K = 413 (which corresponds to Itij.’s similarity parameter k = 790, where k is 
defined in 55.1. This value will be computed in $3.3. Inasmuch as Itij’s experiments 
have shown that the laminar region extends beyond K = lo’, the following sections 
explain how to increase the range of validity of the series solution to cover the whole 
laminar range. 

3.3. Computer extension 

In recent years, the field of computational fluid dynamics has developed sufficiently 
to demand changes in traditional methods of flow calculation. The powers of both 
computers and numerical algorithms (mainly finite differences or, increasingly, finite 
elements) are simultaneously improving with time. However, some fluid mechanicians 
cannot believe that these techniques alone will continue into the next century. Other 
methods will surely be developed that more effectively employ the remarkable 
capabilities of the digital computer. 

A likely possibility is the semi-analytical numerical technique of computer 
extension. In brief form, i t  consists of extending a regular perturbation expansion 
to higher order by delegating the mounting arithmetic to a computer, then analysing 
the structure of the solution in the complex plane of the perturbation quantity, and 
on that basis improving the utility of the series. Of course, the choice of problems 
is limited by the requirement that the extension be a regular perturbation, since there 
is no simple scheme for analysing and improving the asymptotic expansion 
corresponding to a singular perturbation. In this technique it is essential first to 
calculate several terms by hand, in order to find the pattern for writing recursion 
relations for the successive terms of the series, and to aid in debugging a computer 
program. The limited accuracy of floating-point numbers will be controlled by 
running in both double and quadruple precision. A program consists mainly of nested 
DO loops. For the particular problem of flow in a rotating pipe, the difficulty of 
floating-point underflow will be avoided by scaling down the expansion parameter 
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K, and correspondingly scaling up the ratios of successive W,, Y, by a scale factor 
S ,  here taken as 768: 

(3.13) 

Then our general expansions (3.5) and (3.5) are changed to 

* -  
W = Kn-1 K, y = EKn-lF,. (3.14) 

By induction, we find that the functions W, and Y, depend upon the coordinates 
w follows (with the bars omitted) : 

1 1 

?(,+I) 2n+1 

4-1 j-1 

~ l ,  = x CnZjP+2-2j sin (n + 2 - 2i) 8, (3.15) 

w,= x Ent,r5n+2-zjsin(n+2-2i)8,  n =  1 , 2 , 3  ,.... (3.16) 
t(n+i) 2n+i-i 

i-1 1-1 

A Fortran program of some 500 statements was written that successively calculates 
the coefficients C,, and E n ,  in these expressions. The program consists mainly of 
DO loops nested five deep, so that the computer time increases almost as the fifth 
power of the number of the terms. An IBM 370/3081 computer was used for the 
numerics. Eleven minutes of calculation yielded the solution (3.14) up to n = 34, and 
therefore 17 terms for (3.11) and (3.12) in quadruple precision. Computer core-size 
limitations are important, as about 700000 bytes are required for the 34-term 
computation. Most of this large storage requirement is because of nonlinear terms 
involved in the original differential equations. Although the coefficients Cnij,  En,, etc. 
are all rational fractions, we compute them as truncated decimals, so that errors 
accumulate. Comparison of a double- and quadruple-precision computation shows 
that not quite one significant figure is lost from these coefficients as the order of 
approximation n increases by two. The IBM 370/3081 has the advantage of providing 
32 significant figures in quadruple precision, so we know that our 34 coefficients are 
all correct up to 16 figures. The coefficients a ,  and b ,  in the series (3.11) and (3.12) 
for the flux and friction ratios are listed to 10 decimal places in table 1.  

3.4. Radius of convergence 

The range in which a series can be useful in practical computation is limited by the 
nearest singularity. That singularity is often a simple pole or branch point, which 
is located (in general) in the complex plane of the expansion variable (RR, = K, in 
this case). 

Domb-Sykes plot 

If the nearest singularity is on the real axis, then for estimating the radius of 
convergence one can use a simple graphical test due to Domb & Sykes (1957). The 
coefficients a, in (3.11) are seen in table 1 to alternate regularly in sign, which shows 
that the nearest singularity lies on the negative real axis of (K/768)2. If this 
singularity is an algebraic branch point of exponent a, that is, behaves locally like 

f ( K )  = constant + constant +..., as (K/768)2+-D, (3.17) 
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an 
1 1.000000OOO 
2 -1.428571423~ lo-' 
3 2.082649930 x lo-' 

5 9.724698814 x 10-l 

7 6.548607567 

9 5.168760899~ 10' 

11 4.460970700 x lo2 

13 4.077628093 x 108 
14 -1.252424641 x lo4 
15 3.870497562 x lo" 

17 3.801612O27 x 100 

4 -4.185257732 x lo-' 

6 -2.456050351 

8 -1.813939041 x 10' 

10 - 1.505343927 x lo2 

12 -1.340811093~ 108 

16 -1.210547509~ 10' 

en 

1 1.OOOo0Oooo 
2 1.417980792 x 
3 3.117036298~ 
4 9.457769375 x 
5 2.655709024 x 
6 6.568270800 x 

8 - 1.425280710 x 10-4 
9 -1.562997036~ lo-' 

7 -9.983598583 x lo-' 

10 -1.563717961 x lo-' 
11 -1.499313321 x 
12 -1.405517701 x 1O-O 

14 - 1.194296294 x 
15 - 1.091 289492 x 1O-O 

13 - 1.300~9304 x 10-4 

16 -9.940405691 x lo-' 
17 -9.035709599 X lo-' 

bn 

1.OOOOOOOOO 
1.428571428~ lo-' 

3.619369413 x 10-l 

2.045717048 

1.484904641 x 10' 
-4.207576191 x 10' 

1.220012810 x 1 0 2  
-3.602527317 x 102 

1.079605490 x 1@ 
- 3.275 140053 x lo4 

l.OO3825803 x lo" 

9.689685128 x lo4 

- 1.878568298 x lo-' 

-8.218512005 x lo-' 

-5.400170055 

-3.103795639~ lo" 

-3.032456177 x 10' 

f n  

-1.605790o0O~ 
- 1.915352629 x lo-' 

1.978370277 x 
6.501 332417 x 
3.043348641 x loA3 
1.673234915 x 
1.011275111 x 
6.51 1227 142 x 
4.389383862 x 
3.065911636~ 1O-O 
2.204390364 x 
1.624785320 x 
1.224582719~ lo-' 
9.424558450 x lo-& 
7.402 123454 x lo-' 
5.932610272 x lo-' 
4.853179398 x lo-' 

TABLE 1. Coefficients 

Cn 

1.OOOOOO00 
-4.13757476 x 
-2.39052937 X lo-' 
- 1.66032794 x lo-' 
- 1.26266080 x 
- 1.01378094 X 

- 8.43945624 x 
-7.20981073 x 

- 5.554 11902 x 10- 
-4.97197772 x 10-a 
-4.49542048 x lo-' 
-4.09850230 x lo-' 
-3.76308659 x 10-' 
-3.47612180~ lo-" 

--6.zsozn44 x 10-3 

-3.22798151 x 
-3.01141378 x 

Bn 

- 1.605 790OOO x lo-' 
-9.915352541 x lo-' 

1.397837029 x lo-' 
-2.016533417 x 
-3.623317986 x 
-9.934317291 x 
-3.220582080 x 1O-O 
-1.107820392 x 
-3.725208464 x lo-' 
- 1.086915066 x lo-' 
- 1.783184003 x lo-' 

8.623712355 x 
1.246150851 x 
1.005490936 x lo-" 
7.611 606081 X 

7.180432026 x 
9.127452727 x lo-' 

of flux-ratio series 

dn 
l.OOOOOOO00 
4.137574763 x 
2.561 725 120 x 
1.865231 200 x 
1.469772256 x 
1.213959352 x 
1.034570243 x 
9.016509972 x 
7.991 393408 x 
7.176330285 x 
6.512553594 x 
5.961 410 117 x 
5.496416021 x 
5.098807526 x 10- 
4.754913467 x lop3 

4.189902958 x 
4 . 4 5 4 5 3 4 ~  x 10-3 

then the ratio anla,-, of successive coefficients will be linear in l l n  for large n:  

an-i n 
(3.18) 

Therefore, in a plot of an/an-l versus l l n ,  the intercept on the axis of l l n  gives the 
reciprocal of the radius of convergence D, and the intercept on the axis of anla,-, 
indicates the exponent a. In other words, 

lim--- an - 1 as -+o, 1 
an-i D n 



8 K. Mansour 

4 

3 

an 
a , - ]  2 

1 

0 0.05 0.1 0.15 0.2 0.25 

FIGURE 2. DombSykes plot for extended flux-ratio series: +, plotted versus l /n;  0, plotted 
versus l / ( n - 4 ) ;  -, asymptote with a = t. 

Figure 2 shows the DombSykes plot for the flux-ratio series (3.1 1).  It also indicates 
that the plot is remarkably straightened by a shift of 4 in n. Such a shift is admissible 
because as n+cc the change will be of order l / n 2  in (3.18). The straight line has a 
vertical intercept at approximately 1 / D  = 3.45 (( K/768)2 = 1/3.45). The slope clearly 
indicates the presence of a square-root singularity; i.e. a square-root branch point 
on the negative real axis of K2. This corresponds to a conjugate pair of square-root 
singularities lying on the imaginary axis of the similarity variable K itself. Thus the 
nearest singularity has no physical significance and unnecessarily limits the range of 
applicability of the series. 

Neville tables 

In  order to  improve our estimate for the radius of convergence, we fit a polynomial 
of degree M in l / ( n - 4 )  to all the sets of M+1 consecutive points in figure 2, and 
compute the intercept at l /n  = 0. This can be done by forming a Neville table of the 
successive ratios of coefficients anla,-, as discussed by Gaunt & Guttman (1974). The 
first column of this table consists of the ordinates of the points of the Domb-Sykes 
plot (figure 2). The elements of the rth column are generated from the ( r -  1)th by: 

TL e(n, r - 1 )  - ( n  - r )  e(n- 1,  r -  1 ) 
r 

e(n,r) = 

The e(n, 2) are the linear intercepts from two points, the e(n, 3) the quadratic inter- 
cepts from three, etc. The entries in column e(n,8) give for the reciprocal of the 
radius of Convergence : 

3.451 268 125, 3.452698826, 3.452716943, 3.452697903, 3.452685765, 
3.452680736, 3.452678965, 3.452678399, 3.452678236, . ... 
This sequence evidently converges to a value 3.452 6782. A corresponding Neville 
table for finding the exponent a can be formed by letting e(n, 2) be the slopes through 
the successive points in figure 2. This confirms the value o f t  for the exponent of the 
nearest singularity. 
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ModiJied Domb-Sykes plot 

01 = + of the exponent to fit a polynomial 
To refine further the value of the radius of convergence D ,  we use the known value 

(3.19) 

to the Domb-Sykes ratios a2/a1, a3/a2, . . . , a,/a,-, with exponent 01 and with n shifted 
upward by +. This gives the following sequence of numbers as the h a 1  values in each 
column of the Neville table: 

3.452 681 882, 3.452 678267, 3.452 678317, 3.452678 201, 3.452 678222, 
3.452678232, 3.452678226, 3.452678222, 3.452 678223, 3.452 678223, 
3.452 678 224, 3.452 678 225, 3.452 678 224, 3.452 678 224, 3.452 678 224, . . . . 
This seems to converge to a value for 1/D = 3.452678224. Therefore we find that 
the series (3.11) converges up to (K/768)2 = 1/3.452678224 or K = 413.3169036. 

Remarks about convergence 

Any other quantity, either local or global, has the same radius of convergence as 
the flux ratio, but may have a different exponent than + since it is the result of 
integration or differentiation of the original quantities. This was confirmed by 
considering the series for the following : 

( a )  the vorticity at the point that is located in the vertical line at r = 0.5; 
( b )  the transverse skin friction at  the top of the pipe ; 
(c )  the axial velocity down the centre of the pipe. 

For each of these quantities all the usual devices, such as a Domb-Sykes plot or 
Neville table, give the same radius of convergence. We remark that a point quantity, 
such as the velocity at any arbitrary location inside the cross-sectional plane, is in 
general a function of odd as well as even powers of the similarity parameter K. Thus 
it has a pair of complex-congugate singularities at  (D): and - (D)t on the imaginary 
axis of the plane of K/768 ; it must be treated as having a complex pair of singularities 
rather than a single singularity on the negative real axis. 

The functional representation of the jhx-rat io  series 
After we identify the nearest singularities (at least approximately) in the complex 

plane of the perturbation quantity K ,  or partially unveil the analytic structure of 
the solution, the question will arise as to how this knowledge can be exploited to 
extend the range of validity to improve the utility of the series. There are several 
possibilities depending on whether the first singularity is of multiplicative or additive 
type, as discussed by Van Dyke (1974). By forming a new series 

we find that the extracted series has a singularity at  the same location with an 
exponent + t .  This shows that the first singularity is of additive, rather than 
multiplicative, type. As indicated by (3.17), this is the usual situation. Then the 
singularity must be extracted by subtraction, which requires an estimate of its 
magnitude. When the first singularity is subt,racted, the new series has a singularity 
a t  the same location with exponent f t .  This process of subtracting out singularities 
can be continued as far as the accuracy allows. 
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Forming Pad6 approximants (Baker 1965), we can conclude that in addition to the 
singularity on the negative real axis of K 2  there is only a singularity at infinity. That 
is, applying Pad6 approximants of different order shows one fixed pole, which is the 
nearest singularity, and many other poles, all of which are located on the negative 
real axis. It is important to  mention that the other poles all move toward these two 
singularities as the degree of the denominator is increased. This behaviour is 
explained by the fact that  a Pad6 approximant is single-valued and therefore needs 
to  introduce a branch cut joining the singularities, which it simulates as a series of 
poles. 

Although we now know the location of the only two singularities in the plane of 
K2, i t  is still tedious to extract the behaviour near the singularity at infinity. 

3.5. Extension of the range of validity 

The nearest singularity is on the negative real axis of A?, has no physical significance, 
and therefore unnecessarily limits the range of applicability of the series. As 
previously mentioned, there are several possible ways in which the radius of 
convergence can be extended (see Van Dyke 1974; Gaunt & Guttmann 1974), 
depending on the nature of the singularity. 

Euler transformation 

range of convergence for physical K .  We use the new parameter 6 defined by 
An Euler transformation is one way to analytically continue a series or extend the 

( K/768)2 
(K/768)2 + D ' 

6 =  (3.20) 

which maps the nearest singularity away to infinity. The new series is given by: 

(3.21) 

The coefficients c, for n = 1 ,  . . . , 17 are given in table 1 .  The transformed series has 
fixed signs, indicating that the nearest singularity is on the positive real axis of 6. 
As can be seen in figure 3, points of a new Domb-Sykes plot are well behaved. 
Therefore the Neville table and the other usual devices previously presented for 
finding the nature and location of a singularity can be employed to  determine its 
exponent and corresponding radius of convergence. The DombSykes plots of figure 
3 clearly indicate that the radius of convergence is equal to one. This nearest 
singularity at 6 = 1 corresponds to K2 = 00 in the original variables. Thus we have 
been successful in extending the series up to  an infinite value of the similarity 
parameter K = RR,. A singularity a t  6 = 1 is confirmed by the associated Neville 
tables and other available devices. 

The exponent at injinity 
Estimation of the exponent 01 of thc singularity a t  K = co is the most important 

part of the analysis. I n  previous problems, this step has proven to be the hardest, 
and care must be taken. The Domb-Sykes plot shown in figure 3 is clearly nearly 
linear, and suggests that the series converges for 0 6 S 6 1 with a limiting singularity 
of the form 

--C(l-S)" Fr as 8+1, (3.22) 
Fs 
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FIQURE 3. DombSykes plots for flux = ratio series after Euler transformation: 0, direct 
series; +, inverse series; ------, asymptote for a = A; -, asymptote for a = -A. 

which corresponds, in the original parameter, to  

(3.23) 

Here a and c are the important parameters that  we seek. We try to  find the value 
of a as accurately as possible. The simplest way to  estimate a is from the Domb-Sykes 
plot. Figure 3 implies that  its value is very small; we show the terminal slopes for 
direct and inverse series with a = &, which is the value according to It6's boundary- 
layer model. The corresponding Neville table has an irregular behaviour and does not 
suggest any value for its magnitude. 

A second way, which is one of the most reliable devices, is to take the logarithmic 
derivative of the series (3.21). Comparing this with the expansion of d(1og (1 -6)")/d6 
yields the following sequence of estimates for a: 

0.041 375 7485, 0.049522 5502, 0.052 847 970 7, 0.054563 881 1, 0.0555468732, 
0.056 161 931 0, 0.0565449374, 0.0567876925, 0.056938433 1,  0.0570266773, 
0.057071 3882, 0.0570852224, 0.057 0706890, 0.057052 5384, 0.057 016591 9, 
0.0569722924, .... 
Except for the first three, these are fitted to within 1 yo by 

(3.24) 

Figure 4 is the plot of this sequence versus l/n. A likely candidate for the intercept 
is evidently &. An important feature is a maximum in the plotted points, which 
indicates that  the exponent & of the boundary-layer literature cannot be achieved. 
Furthermore the final entries in each column of the Neville table give the following 
numbers : 

0.053 171 218, 0.053 264697, 0.053 398922, 0.053550 331, 0.053 703 981, 
0.053 850 252, 0.053 982 863, 0.054097 677, 0.054 191 959, 0.054 263 914, . . . . 

Although the rate of convergence of this sequence is slow, our choice of & for the 
exponent is certainly reasonable. 
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PICIJRE 4. Plot for logarithmic derivative after Euler transformation 
versus l / n :  ----, (3.24); -, graphical fit. 

0.94 

0.92 

0.90 

0.88 

0.86 
0.06 0.08 0.1 0.12 0. I4 

FIQURE 5. Magnified Dorntdykes plots: 0, direct series versus l /(n- 1.25); +, inverse series 
versus l /(n-1); -, asymptote for a = Ilg: ~ - - - -  , asymptote for a = -&. 

Figure 5 is the magnified Domb-Sykes plot of the Euler-transformed series, which 
also allows the possibility that  the exponent is a z &. 

A third way to find a is to apply the technique of critical-point renormalization 
(Gaunt & Guttmann 1974) to the direct and reciprocal series. This yields the following 
sequence of values for a: 

0.06890050, 0.068265 10, 0.06735861, 0.06640898, 0.06548528, 
0.064606 70, 0.063 77676, 0.062 99366, 0.06225436, 0.061 55564, 
0.06108844, 0.06026821, 0.05967446, .... 

The convergence is so slow that we can only say that the sequence may approach 
the value a = 0.0555555. 

A fourth approach involves estimating the value of a by completing the series (see 
Van Dyke 1974) on the assumption that the value of the multiplicative constant C 
in C( 1 can be found by successively equating like terms in the Taylor series 
expansion with those in the Euler-transformed series (3.21). Figure 6 is the plot of 
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cc-' 

0.5 4 

CC-l versus l l n  for different exponents a, where C-l is the corresponding constant 
for the inverse of the C(l -a)= series. This product of completion coefficients must 
extrapolate to one as n goes to 00. This figure shows that, better than any other simple 
rational exponent, the choice can be extrapolated so that the product CC-' 
approaches one. By contrast, the choice a = & suggested by boundary-layer models 
gives instead an unacceptable sequence. The final entries in each column of the 
corresponding Neville tables are 

0.93290699, 0.93547394, 0.93874088, 0.942 16705, 0.94540554, 
0.94823153, 0.95049938, 0.95211672, 0.95302919, ..., 
0.318139720, 0.312279193, 0.307439847, 0.303436312, 0.300125744, 
0.297395381, 0.295154678, 0.293329999, 0.291 860851, .... 

An independent unpublished analysis by S. N. Curle provides another sequence of 
numbers for estimating the value of the exponent. If an infinite series with coefficients 
c, and its associated inverse d ,  in x has a dominant singularity at  xo with exponent 
a, then by simple manipulation one gets 

4, = - (nn)2 c,d, = an sinan. 
This inverts to give 

This last equation is used to find the following sequence of numbers for a :  

0.041 434245 7, 0.049593 2504, 0.052 915 83 1 4, 0.054625478 6, 0.056 2 106034, 
0.056587983 1, 0.056825741 5, 0.056972061 1,  0.0570563920, 0.057097631 6, 
0.057 108 377 8, 0.057097 2908, 0.0570704735, 0.057032 3152, 
0.056986026 1, 

Although this sequence and that obtained previously by taking the logarithmic 
derivative appear similar, upon closer inspection one notices that they differ in the 
fourth significant figure throughout. As a result, at  least within two significant figure 
accuracy, the above sequence again converges to a value close to A. 

The method of Pad6 approximants (Baker 1965) has been applied to the original 

(an)2 = 4,+Q($,)2+.... 

. . . . 

FIGURE 6. Extrapolation of product of completion coefficients for 
direct and inverse series versus l ln .  
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FIGURE 7. DomWykes plot for flux-ratio series after Euler transformation and multiplicative 
extraction of the singularity with various exponents, versus l ln .  

series. Applying Pad6 approximants to the logarithmic derivative gives the following 
sequence of numbers for the corresponding boundary -layer exponent : 

0.051 519 9165, 0.056568 518 6, 0.057 235423 4, 0.057 235 718 36, 
0.0582652476, 0.052551 6550, 0.0544958708, . ... 

It is typical of Pad6 approximants that this sequence is irregular. However, i t  is very 
unlikely that i t  approaches the value & of existing boundary-layer analysis, and very 
plausible that it approaches &. 

4. The secondary singularity at K = 00 

We see that the dominant singularity at co is probably a multiple of (1 -&)A for 
the Eulerized flux-ratio series (3.22). We next multiplicatively extract this singularity, 
recasting the flux-ratio series as 

00 

f.= ( 1 - 6 ) A C e n S n .  (4.1) f, 1 

The first 17 coefficients en are listed in table 1. 
The Domb-Sykes plot of the new coefficients has an interesting behaviour. The 

study of this may lead to better understanding of the nature of the singularity. We 
attempt to understand this behaviour by computing the corresponding coefficients 
of (4.1) as a result of varying the exponent of 1-6 about the value & = 0.05555. 
Figure 7 is the Domb-Sykes plot of this attempt. An interesting development occurs 
close to  a = A. The plot for u = 0.055 goes to 00 near l /n  = 0.2, whereas that for 
a = 0.060 is bounded. This behaviour for a = & convinces the author that this value 
indeed represents the correct exponent for the boundary-layer singularity. It is 
anticipated that, when the proper singularity is extracted, the coefficients of the 
remaining series will be small and of the same sign. This will occur close to the vaIue 
of the exponent for which the last coefficient is zero. As can be seen this happens a t  
about a = A. 

and 
a = A. If we extract the singularity with the correct exponent, the remaining series 

Figure 8 is a simplified form of figure 7, comparing the extraction of u = 
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FIGURE 8. DombSykes plot for flux = ratio series after Euler transformation and multiplicative 
extraction of the singularity with exponents a = $ versus l/(n- 1) (0) and a = & versus 
11" (0). 
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FIQURE 9. DombSykes plot for flux-ratio series after Euler transformation and multiplicative 
extraction of dominant singularity and subtraction of logarithmic singularity. 

. I/n 

will show a weaker coincident singularity. This has apparently occurred with a = A, 
where the exponent of the secondary singularity is increased by about one. On the 
other hand, if we extract too large an exponent, the remaining series will offset our 
error by showing a compensating negative exponent. For a = & the secondary 
exponent is about -0.045, suggesting again that the correct exponent is about 

Furthermore, figure 8 leads to the conclusion that the secondary singularity a t  one 
has the exponent a = 1. Such a non-negative integral value indicates that a 
logarithmic term intervenes. In  this case the term is a multiple of (1 -8) log (1 -8). 
Therefore, estimating its coefficient, we have 

&-0.045 = 0.055. 

CO 

( 1 

2 = C(1- 8)h 1 -& (1 -8) log (1 -8 )  + x f , 8 n  + . . .) , F 

4 
where the first 17 coefficientsf, are listed in table 1.  A new DombSykes plot (figure 9) 
is well behaved, and oscillates around the line corresponding to the exponent a = 2. 
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This indicates that  a higher-order logarithmic term is involved. Thus we estimate 
Q) 

3 = C(1 -a)?.( 1 -& (1  -6) log (1  -a)-& ( 1  -6)2 log (1 -6) +c gn6"), (4.3) 
4 1 

where the first 17 coefficients gn are listed in table 1.  A new Domb-Sykes plot 
oscillates too much to be relied upon. The value of C can be calculated by summing 
(4.3) after completing it according to (4.2), which gives C = 1.01632. Therefore we 
recast the series finally as 

1.01632( 1 -&)A 1 -& (1  -6) log ( 1  - 8 )  -& (1  - C Y ) ~  log ( 1  - 6) +X gn6,). (4.4) 
F A =  

All the evidence, taken together, supports a value for a x A. Without the benefit 
of any further information, we could be led to  accept a value close to A, rational or 
irrational. However, asymptotic analysis in terms of conventional boundary-layer 
theory supports a simple rational number as a suitable choice for the exponent. 
Giving this argument, we conclude that a = 

00 

( 1 8 

and certainly not A. 

5. Comparison with other results for friction ratio 
It5 & Nanbu (1970) introduced an alternative for the similarity parameter K that 

is more useful in experiments and in their boundary-layer theory. It is based on the 
actual mean velocity W, down the pipe. Their k is defined in our terms as 

2 w, a 4Qa2 k=--, 
v v  

Since the actual flux through the rotating pipe is given by F, = nu2 W,, then 

m2 
8Qa 

F,=- - -k .  (5.2) 

The K that we have used is based on the hypothetical mean velocity W,, or equi- 
valently on the pressure gradient 

w, a 2Qa2 
(5.3) K = - - .  

v v  

For a parabolic profile, the mean velocity is half of the maximum, so the flux rate 
is 

From (5.4) and (5.2) 

(5.5) 
_ -  Fr k -- 
F, 2K' 

Values of the friction ratiofr/fs = (&/F , ) - l  are given by our flux-ratio series (4.1). 
In terms of It6's parameter k, the flux-ratio series (3.11) converges up to k x 790. 
To compare with the boundary-layer analysis, we also convert our asymptotic 
expression to It6's parameter k. The flux ratio decreases as 1.01631(1 -&)A. I n  terms 
of the original variable K then, 
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FIGURE 10. Friction ratio for laminar flow in slowly rotating pipe: ( 1 )  ItB’s experiment; 
(2) present theory; (3) ItB’s boundary layer, (4) Mori & Nakayama’s boundary layer. 

Comparing (5.5) with (5.6) yields the asymptotic relationship between our parameter 
and Itti’s: 

k = 3.96967&. (5.7) 
Hence the flux ratio decays as 

and the friction ratio grows asymptotically as 

I(. -l fi- = - 0.4952lki, 
fs 

(5.9) 

Figure 10 is a comparison of previous experimental and boundary-layer results with 
the semi-numerical result obtained in this research. 

6. Discussion 
A major difference between our results and those of previous analyses is in the 

asymptotic behaviour of the friction factor as the similarity parameter K = RR, and 
hence k increases. The prevailing opinion has been that the relationship goes as 
f,/f, - ki, whereas we find that f,/f, - ki. 

As can be seen in figure 10, this difference is not significant until k is greater than 
30000. Below that there is little discrepancy between the present work and others. 
It can be explained by the fact that experiments require a finite amount of rotation, 
whereas this investigation considers the limit as the rotational Reynolds number goes 
to zero. It would be helpful to obtain experimental data for this rotating-pipe problem 
when Rr is very small in order to see if our analysis is valid for considerably lower 
values of k. 

As regards the difference between the asymptotic behaviours €or large values 
of k, fJf, - ki versus fJf, - ki, the following remarks can be made. 



18 K .  Mansour 

(a)  Our expansion is based on the double limit 

Rr+o’}  K = RR, fixed. 
R + m ,  

From an expansion for small K the limiting case as K goes to infinity has been 
extracted; however, the experiments are base2 upon R-t &and R, fixed (and small). 
In other words the asymptotic behaviour may depend on the manner in which the 
similarity parameter tends to infinity. 

(b)  The uniqueness of the problem at very large values of the similarity parameter 
may be in question. If the solution is not unique, then there exists a bifurcation, one 
solution being observed and the other one might conform with present theory. In the 
similar flow through a curved pipe, Taylor (1929) expressed the possibility that there 
may exist an intermediate flow regime between the laminar and turbulent ranges. 
He observed a transition from a steady laminar flow to a laminar vibrating flow as 
the speed increased. The onset of turbulence occurred only at a significantly higher 
speed. 

As far as uniqueness is concerned, recently in the same class of problems a second 
solution has been observed. Dennis & Ng (1982) and Nandakumar & Masliyah (1982) 
have been able to obtain dual solutions in a coiled pipe using a series truncation and 
finite-difference methods respectively. The same phenomenon has also been observed 
in the flow through a curved semicircular duct (see Masliyah 1980). By existence 
of such a duality, the fact (which has long been established) that the laminar flow 
in a curved duct is composed of a main flow in the axial direction with a 
superimposed secondary flow having two counter-rotating vortices, should be 
reconsidered. Certainly the second solution having four counter-rotating vortices will 
raise the question about other branches of bifurcation. The same phenomenon has 
also been observed in the flow through a curved semicircular duct (see Masliyah 1980). 
Therefore there is a possibility that at high K the experiments show one of those 
branches. 

Thus we have seen possible explanations for the discrepancy between our semi- 
numerical results and the experiments regarding the exponent of the similarity 
parameter. For large values of K = RR,, however, conventional boundary-layer 
theories, which are based on the same equations as ours, and the same assumption 
of slow flow, are in agreement. So, if the experimental curves are not completely 
describing the flow field, then we also must find fault with the boundary-layer curves. 
Mori & Nakayama (1968) attempted to explain what is happening in the boundary 
layer and core at high values of k. They reasoned that, since the flow is fully developed, 
the thickness 6 of the boundary layer is constant in the direction of the pipe axis, 
but varies with angle 8. Then they made the assumption that the thickness of the 
boundary layer is independent of the angular coordinate, and therefore can be treated 
as a constant. As previously mentioned in Q 1 ,  because of the direction of the Coriolis 
force there is no symmetry, so this assumption seems to be inconsistent. Based on 
what has already been shown, 16’s  model for the structure of the flow leads to the 
result that in the vicinity of the innermost point the boundary-layer thickness is 
infinite; or, in other words, his model breaks down locally. 

The question now arises as to whether or not the present semi-numerical results 
can be used to correct the boundary-layer model. Although we have analysed local 
quantities at a few points, it  would be very tedious t,o calculate in this way the whole 
flow field for large K .  

As far as we know, there is one finite-difference solution by Duck (1983) corres- 
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Powers Powers of R: 
of 

0 n = l  n = 2  n = 3  n = 4  n = 5  
1 n = 2  n = 3  n = 4  n = 5  
2 n = 3  n = 4  n = 5  
3 n = 4  n = 5  
4 n = 5  

K = RR, 0 1 2 3 4 

TABLE 2. Powers of K = RR, and Rf in nth approximation of double expansion 

ponding to  low values of K for our rotating-pipe problem. I n  general, finite-difference 
approaches to  our problem are inadequate, because an impractically fine mesh would 
be required to  give the right structure for very high values of the similarity parameter 
K = RR,. 

Appendix. Distinguished limits for slowly rotating pipe 
Equations (2.1) and (2.2) are seen to  involve two parameters RR, and R:. A double 

expansion of the solution would contain the powers of these quantities listed in 
table 2. The resulting series for the friction ratio would contain, by symmetry, only the 

(Barua’s equation (21) contains these same two combinations, but with different 
coefficients because he uses a different definition of friction ratio.) 

Such a double expansion is expensive to compute, and methods of analysing double 
power series are not well developed. One way of reducing i t  to a single expansion is 
to fix the value of R,. Instead, we suppose that R, is small ; then a first approximation 
contains terms from only the first column of table 2. This corresponds formally to  
the double limit adopted in $3. 

Furthermore, the author anticipated (as has happened in some other problems) that 
the coefficients in successive columns of table 2 decrease in magnitude (for low values 
of R,) .  

We suggested in $6 that  our solution differs from experiment because we let R, 
tend to  zero, whereas in experiment i t  is fixed. We propose the following suggestion 
for improving the theory. We do not neglect R,, but assume (with K = RR,) the 
relation (R,)2 = dKF, 

for some exponent /3, where 6 is a constant of order unity (but presumably smaller 
than one). Then the axial-momentum equation (which is the only place that R, 
appears in the problem) becomes 

+ d K ~ ( s i n Q - + c o s B ~ .  ay (A 2) 
ar 

The limiting form of the equation for K+O changes from the Poiseuille equation 
V2 W + 4 = 0 for /3 > 0 to the degenerate form (cos Q) aY/ar- (sin Q / r )  aY/aQ = 0 for 
p < 0, or at $ = 0 to 
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This is a distinguished limit in the sense of Cole (1968). However, i t  is difficult to  solve 
this equation in simple closed form, as we can the Poiseuille equation, to start an 
expansion in powers of K. That difficulty disappears if we take p = 1, which is also 
a distinguished limit from the point of view of higher approximations. For both terms 
on the right-hand side of (A 2) are of the same order in K, and hence equally small. 
We may say that /3 = 1 gives a distinguished second-order limit. Equation (A 2) 

Then when we expand the solution in powers of K ,  

W = Wl+KW2+K2W3+ ..., 

Y = Yl+K!P2+K2Y3+..., 

the second-order equation becomes 

This is a ‘richer’ equation than the one with S = 0 that  the present work solves at 
this stage. 

In  the same way we say that p = 2 gives a distinguished third-order limit; the 
equations for W, and W, are the same as in the present work, but those for W, and 
higher terms are richer. But we gain the most information from the smallest value 

It would be interesting to  repeat the computations of this paper for the distinguished 
limit with p = 1 .  It is t o  be hoped that this would lead us to explain better the flow 
field. 

of p. 

The author is indebted to  Professor M. D. Van Dyke for his encouragement and 
valuable advice during the course of this research. Support was provided by the Air 
Force Office of Scientific Research under contract AFOSR 74-2649 and National 
Science Foundation contract CME-7824412. 

R E F E R E N C E S  

ADLER, M. 1934 Stromung in gekriimmten Rohren. 2. a n p w .  Math. Mech. 5 ,  257-273. 
BAKER, G. A. 1965 The theory and application of the Pad6 approximant method. In Advances 

BARUA, 8. N. 1954 Secondary flow in a rotating straight pipe. Proc. R. SOC. Lond. A 227, 133-139. 
BENNETS, D. A. & HOCKING, I .  M. 1974 Pressure-induced flows at low Rovsby numbers. Phys. 

BENTON, G. S. 1956 The effect of the Earth’s rotation on laminar flow in pipes. J .  Appl .  Mech. 

COLE, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell. 
DEAN, W. R. 1927 Note on the motion of fluid in a curved pipe. Phil. Mag. (7) 4, 20-223. 
DEAN, W. R. 1928 The stream-line motion of fluid in a curved pipe. Phil. Mag. (7)  5 ,  673495.  
DENNIS, S. C. R. & NG, M. C. 1982 Dual solution for steady laminar flow through a curved tube. 

DIJCK, P. W. 1983 Flow through rotating pipes of a rircular section. Phys. Fluids 26, 614-618. 

in  Theoretical Physics (ed. K.  A. Brueckner), vol. 1 ,  pp. 1-58. Academic. 

Fluids 17, 1671-1676. 

23, 123-127. 

Q. J .  Mech. Appl .  Maths 35 ,  305-324. 



Laminar flow through a rotating pipe 21 

GAUNT, D. S. & GUTTMANN, A. J.  1974 Series expansions: analysis of coefficients. In Phase 
Transitions and Critical Phenomena (ed. C. Domb & M. S. Green), vol. 3, pp. 181-243. 
Academic. 

 IT^, H. & MOTAI, T. 1974 Secondary flow in a rotating curved pipe. Rep. Znst. High Speed Mech. 
29, 33-57. 

1 ~ 6 ,  H. & NANBU, K. 1971 Flow in rotating straight pipes of circular cross-section. Trans. 

JONES, J. R. 6 WALTERS, T. S. 1967 A note on the motion of a viscous liquid in a rotating straight 

MASLIYAH, J. H. 1980 On laminar flow in curved semicircular ducts. J. Fluid Mech. 99, 46-79, 
MORI, Y. & NAKAYAMA, W. 1968 Convective heat transfer in rotating radial circular pipes (1st 

NANDAKUMAR, K. & MASLIYAH, J. H. 1982 Bifurcation in steady laminar flow through curved 

TAYLOR, G. I. 1929 The criterion for turbulence in curved pipes. Proc. R. SOC. Lond. A 124,243-249. 
TREFETHEN, L. 1957a Fluid flow in radial rotating tubes. In Actes, 9 tme Colzgr. Intle de Mic. 

Appl., vol. 1 ,  pp. 341-350. Universitk de Bruxelles. 
TREFETHEN, L. 1957b Flow in rotating radial ducts: report R55GL 350 on laminar flow in 

rotating, heated horizontal, and bent tubes, extended into transition and turbulent regions. 
Gen. Elec. Co. Rep. 55GL350-A. 

VAN DYKE, M. 1970 Extension of Goldstein’s series for the Oseen drag of a sphere. J. Fluid Mech. 
44, 365-372. 

VAN DYKE, M. 1974 Analysis and improvement of perturbation series. Q. J. Mech. Appl. Maths 
27,423-450. 

VAN DYKE, M. 1975 Computer extension of perturbation series in fluid mechanics. SIAM J. Appl. 
Maths 28, 720-734. 

VAN DYKE, M. 1978 Extended Stokes series: laminar flow through a loosely coiled pipe. J. Fluid 
Mech. 86, 129-145. 

WHITE, C. M. 1929 Streamline flow through curved pipes. Proc. R .  Soc. Lond. A 123,645-663. 

ASME D: J .  Basic Engng 93, 383-394. 

pipe. 2. angew. Math. Phys. 18, 774-781. 

Report, laminar region). Zntl J. Heat Mass Transfer 11, 1027-1040. 

tubes. J. Fluid Mech. 119, 475-490. 




